Tag Archive for: Aluminum casting parts

AQL Acceptable Quality Level. A quality level established on a prearranged system of inspection using samples selected at random.

As-cast condition Casting without subsequent heat treatment.

Backing sand The bulk of the sand in the flask. The sand compacted on top of the facing sand that covers the pattern.

Binder The bonding agent used as an additive to mold or core sand to impart strength or plasticity in a “green” or dry state. Read more

A Primer on Selecting Cast Copper Alloys

Traditionally, cast copper alloys were classified by a variety of systems including the ASTM letter-number designation based on nominal composition, by trade names, and by descriptive terms such as “ounce metal,” “Navy M” and so forth. However, with technological developments, new alloys were produced and existing alloys modified, making the old designation systems inadequate and misleading.

A new system was developed based on a precise description of the composition range for each alloy, which is now the accepted alloy designation system used in North America for cast copper and copper alloy products. Originally developed as a three digit system by the copper and brass industry, the designations have now been expanded to five digits that follow a prefix letter “C,” and have been made part of the Unified Numbering System (UNS) for Metals and Alloys. The UNS is managed jointly by the American Society for Testing and Materials, and the Society of Automotive Engineers. Read more

The mechanical properties of alumi- num casting alloys are obtainable only if the chemical and heat treating specifications are followed carefully. It should be noted that the properties obtained from one particular combination of casting alloy, foundry practice and thermal treatment may not necessarily be identical to those achieved with the same alloy in a different foundry or with a different thermal treating source. In all aluminum casting alloys, the percentages of alloying elements and impurities must be controlled carefully. If they are not, characteristics such as soundness, machinability, corrosion resistance and conductivity are affected adversely. Read more

  Microscopically, all gray irons contain flake graphite dispersed in a silicon-iron matrix. How much graphite is present, the length of the flakes and how they are distributed in the matrix directly influence the properties of the iron.

The basic strength and hardness of the iron is provided by the metallic matrix in which the graphite occurs. The properties of the metallic matrix can range from those of a soft, low carbon steel to those of hardened, high carbon steel. The matrix can be entirely ferrite for maximum machinability but the iron will have reduced wear resistance and strength. An entirely pearlitic matrix is characteristic of high strength gray irons, and many castings are produced with a matrix microstructure of both ferrite and pearlite to obtain intermediate hardness and strength. Alloy additions and/or heat treatment can be used to produce gray iron with very fine pearlite or with an acicular matrix structure. Read more

The term “cast iron” designates an entire family of metals with a wide variety of properties. It is a generic term like steel which also designates a family of metals. Steels and cast irons are both primarily iron with carbon as the main alloying element. Steels contain less than 2% and usually less than 1% carbon, while all cast irons contain more than 2% carbon. About 2% is the maximum carbon content at which iron can solidify as a single phase alloy with all of the carbon in solution in austenite. Thus, the cast irons by definition solidify as heterogeneous alloys and always have more than one constituent in their microstructure. Read more